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Abstract. Precision and personalized medicine is an advanced approach
to healthcare that involves the use of smart technologies to collect population-
wise data. It aims to empower clinicians to predict the most effective
treatment for patients and to improve routine medical and public health
practice. The potential clinical benefits of advancing precision and per-
sonalized medicine include early identifying people at risk for disease,
modifying treatments based on large data sets, longitudinal monitoring
of healthy people and patients, and better management and outcomes of
diseases. Clinical data are largely based on this approach, and smart sen-
sors will represent enabling technologies for personalized and precision
medicine to consider also daily-life data of patients. TOLIFE is a project
funded by the European Union to collect daily-life data of patients with
complex chronic conditions, such as COPD, using non-invasive smart
sensors. The sensor will be used to predict exacerbations, assess health
outcomes, and characterize the patient’s health status. The smart sen-
sors will be commercial or adapted for TOLIFE purposes. This work
focuses on the architecture of the data collection approach in TOLIFE,
the rationale of the selection of each sensor, the associated raw data, and
high-level health-related parameters.
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1 Introduction

Precision and personalized medicine aims to empower clinicians to predict the
most effective treatment for patients and to improve routine medical and public
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health practice. An advanced approach to precision and personalized medicine
involves the use of smart technologies to collect population-wise data for subse-
quent application on the individual patient level and it can use data from ”big
data” sources [1, 2]. The potential clinical benefits of advancing precision and
personalized medicine are: i) early identifying people at risk for disease with
greater accuracy, ii) modifying treatments based on a variety of large data sets
from both individual and population-based studies, iii) longitudinal monitoring
of healthy people and patients to better understand the transition from healthy
to diseased states, and iv) better management and outcomes of diseases, in par-
ticular in the case of complex chronic conditions (CCCs) [3].

Typically, precision and personalized medicine is largely based on clinical
(especially -omics based) data and daily-life data (e.g. environmental, mobility,
lifestyle) that can play a key role in a completed evaluation in particular for the
patient with CCCs. For this reason, in recent years there has been an increasing
interest in monitoring the patient with CCCs by integrating the clinical data
with their daily-life data. Therefore, the availability of technological tools for
non-invasive data collection in a daily-life context can play a key role in this
scenario, smart sensors, in particular, will represent enabling technologies for
personalized and precision medicine [4–6].

The collection of daily-life data of patients with CCCs, like chronic obstruc-
tive pulmonary disease (COPD), by using non-invasive smart sensors is one of
the main aims of TOLIFE (”Combining Artificial Intelligence and smart sens-
ing TOward better management and improved quality of LIFE in chronic ob-
structive pulmonary disease”) project recently funded by the European Union
(project number: 101057103)[7]. More in detail, the TOLIFE project aims to
clinically validate an artificial intelligence (AI) solution to enable optimized and
personalized treatment and improved quality of life in COPD patients. TOLIFE
AI tools will process daily life patient data captured by a set of non-invasive
smart sensors to predict exacerbations, assess the patient’s health outcomes and
characterize the patient’s health status. The smart sensors that will be used in
TOLIFE will be both commercial (i.e. smartphone, smartwatch, and spirome-
ter) or specifically developed or adapted for TOLIFE purposes (i.e. smartshoes,
smart mattress cover, and environmental unit).

In this work, we describe the set of non-invasive smart sensors that we will
employ in the TOLIFE clinical studies by focusing on the architecture of the data
collection approach, the rationale of the choice of each sensor, the associated raw
data, and high-level health-related parameters.

2 Methods

2.1 Smart sensors definition and architecture

The TOLIFE vision views each COPD patient as a complex system whose con-
dition interacts with several comorbidities (Figure 1). The present medical treat-
ment, history (e.g. previous exacerbations/hospitalizations, medical/treatment
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history), environment (e.g. indoor/outdoor air quality, temperature, humidity,
weather condition), and lifestyle (e.g. smoking, exercise, diet, social interaction)
are the inputs that ”act” on the patient to modulate the disease progression. The
severity of COPD and the comorbidities are related to the patient’s health con-
dition, which TOLIFE aims to quantify using AI algorithms on data collected by
non-invasive smart sensors. The symptoms (e.g. shortness of breathing, wheez-
ing, coughing, and non-respiratory symptoms linked to comorbidities), physical
performance (e.g. exercise capacity, mobility, and gait characteristics), and al-
tered patterns of psychophysiological signals are outputs ”generated” by the
patients, which depend on the inputs and the patient’s health status (e.g. heart
rate, breathing rate, temperature, oxygen saturation).

Fig. 1. TOLIFE personalized approach

The majority of input/output patterns associated with COPD and comor-
bidities are linked to the patient’s daily-life activities and are either not available
in the clinical routine or are only available occasionally. The TOLIFE research
hypothesis states that daily-life patient-specific data linked to inputs (environ-
ment, lifestyle) and outputs (symptoms, performance, psychophysiological sig-
nals) contain a rich set of information for the continuous estimation of patient
health status to support clinicians toward treatment of COPD patients based on
precision and personalized medicine. The input/output patterns shown in Figure
1 will be used by TOLIFE’s smart sensors to collect patient data. In particu-
lar, patient data on the environment, way of life, symptoms, performance, and
psychophysiological signals will be measured by the smart sensors.

The selection of daily-life data that have the potential to reveal patient health
status, COPD progression, early signs of exacerbations, and quality of life served
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as the foundation for the definition of TOLIFE smart sensors. Then, we chose
non-invasive sensing tools that can identify such COPD-related input/output
patterns without the patient having to exert much effort. Smart sensors are
chosen to achieve the best compromise between the fewest devices the patient
will use and the greatest number of pertinent parameters. Smart sensors have
also been chosen to enable continuous, non-invasive monitoring of the patient’s
activity without affecting their daily lifestyle.

2.2 Smartwatch

A smartwatch will be used to collect patient data for the TOLIFE clinical studies
regarding lifestyle, symptoms, performance, and psychophysiological signals. The
smartwatch’s raw sensor data includes details about the environmental sounds
(microphone), sleep quality (accelerometers, gyroscopes, PPG sensor), walking
speed (accelerometer, GPS), heart rate (HR) and heart rate variability (HRV)
(PPG sensor and electrodes), oxygen saturation (PPG sensor), physical activity
(accelerometer, gyroscope, GPS), social interaction (microphone), and daylight
exposure (light sensor).

The smartwatch selected for the project was the Samsung Galaxy Watch 5
considering the literature analysis [8–12] and market research (version 5, to date
the newest). The Galaxy Watch 5 has all the sensors required to measure the
data from TOLIFE patients (accelerometers, gyroscopes, GPS, PPG sensor, mi-
crophone, light sensor, electrodes). According to the manufacturer, the battery’s
41 mAh capacity and estimated lifespan of 40 to 50 hours should provide enough
power for at least one whole day of continuous sensor use. The relatively low cost
(around 290€) is another important feature. Additionally, unlike ”closed” de-
vices like Garmin or Fitbit, which extract high level parameters using exclusive
and closed algorithms, the Galaxy Watch 5 permits the collection of sensor raw
data because it is equipped with the Wear OS operating system. This operating
system enables the creation of custom applications that can turn on the device’s
various sensors and extract the raw sensor data from them. In order to avoid
losing any data during the data collection phase of the TOLIFE clinical study,
the possibility to collect and store raw data at custom sampling frequency is
essential for the project. In any case, we will also collect pre-elaborated device
data (such as step count, mean heart rate, and SpO2) to potentially use them as
input data for the TOLIFE AI tools. Table 1 lists the Galaxy Watch’s raw sen-
sor data that we will extract as well as the chosen sampling frequencies for each
one. The sampling frequencies were chosen to balance power consumption and
the dynamics of the signals to be collected. For accelerometers and gyroscopes
(physical activity related sensors), the sampling frequency was set to 50 Hz. For
the HR raw sensor, we selected the highest frequency available (25 Hz).

2.3 Smartphone

A smartphone will be used in the TOLIFE clinical studies to collect patient’s
data about lifestyle, symptoms, and performance. Particularly, the smartphone’s
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Table 1. Galaxy Watch 5 raw signals

Sensors Data output Sampling frequency

Accelerometer Acc x, Acc y, Acc z 50 Hz
Gyroscope Wx, Wy, Wz 50 Hz

GPS Absolute position 5 Hz
HR raw sensor Photoplethysmogram (PPG) 25 Hz

Light sensor Light intensity 1 Hz
Microphone Sound intensity 10 Hz

raw sensor data includes details about patient sounds (microphone), walking
speed (accelerometer and GPS), physical activity (accelerometer, gyroscope,
GPS), and social or digital interaction (microphone, interaction with the phone).
Given the vast selection of smartphones with the same essential features (Blue-
tooth low energy, Wi-Fi, and data connection), we chose the Samsung M13 as
our smartphone because it provides access to raw sensor data, has a long bat-
tery life (5000mAh), and is reasonably priced (about 180€). Table 2 reports the
raw sensor data that we will collect from the smartphone and the associated
sampling frequencies.

Table 2. Samsung M13 raw signals

Sensors Data output Sampling frequency

Accelerometer Acc x, Acc y, Acc z 50 Hz
GPS Absolute position 5 Hz

Microphone Sound intensity 10 Hz

2.4 Smartshoes

The ”smartshoes” are a research prototype that will be modified for the TO-
LIFE clinical study. Three pressure sensors will be integrated under the insole
of the smartshoes to track how the foot interacts mechanically with the ground.
Additionally, smartshoes will incorporate a digital inertial measurement unit,
consisting of an inertial platform with a 3D accelerometer and a 3D gyroscope.
To enable low-energy data transmission to a mobile device, a Bluetooth trans-
mission module will be integrated with the rest of the electronic unit in the heel
of the smartshoes. A rechargeable battery allows a complete operation of the sys-
tem for 48 hours. The main adaptation with respect to the previous prototype
will be related to the sensor number and the structure of the shoe model.

Smartshoes will be used in the TOLIFE clinical studies to gather patient data
on performance and lifestyle. Raw sensor data from the smartshoes contains de-
tails about the patients’ gait activity, including gait speed and gait patterns.
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Gait speed is correlated with clinical symptoms, pulmonary functions, and qual-
ity of life scores and slows down as COPD severity increases [13]. In patients
hospitalized for an acute COPD exacerbation, gait speed is a predictor of the
risk of readmission [14]. Additionally, COPD patients have altered gait patterns,
including shorter steps, longer double supports, slower cadences, and more vari-
able walking [15].

The number of pressure sensors used and their locations are the main adapta-
tion of smarthoes for TOLIFE project. In order to achieve the smallest possible
number of sensors placed in the best possible location, the distribution of the
pressure sensors was analyzed, taking into account both static and dynamic as-
pects of foot movement during typical user activities. Also the technical factors
like the PCB integration, the physical area of the sensor, the material of the sole,
and the geometry of the shoe were analyzed for TOLIFE purposes. The result
of this analysis is the selection of three main points of contact between the foot
and the sole of the shoe (the base of the big toe, the base of the little toe and
the center of the heel). Thus, three pressure sensors (FSR 402 manufactured by
Interlink) will be embedded in a custom flexible circuit board integrated in the
shoe insole, as shown in Figure 2.

Fig. 2. Main points of contact between the foot and the sole and flexible PCB for the
integration of the pressure sensors

Direct integration of the inertial measurement unit with a 3-axis accelerom-
eter and gyroscope into the electronic module is planned. All sensor data is
sampled at 50 Hz before being sent to the smartphone via Bluetooth. The elec-
tronic module also incorporates the parts required to control battery charging.
Table 3 lists the raw sensor data from the smartphone that we will be collecting
as well as the corresponding sampling frequencies.
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Table 3. Smartshoes raw signals

Sensors Data output Sampling frequency

Accelerometer Acc x, Acc y, Acc z 50 Hz
Gyroscope Gyro x, Gyro y, Gyro z 50 Hz

Pressure Sensor P0, P1, P2 50 Hz

Compared to the prototypes developed in previous projects, the smart shoes
for the TOLIFE project will have a customized model with structural modifica-
tions (Figure 3). The smartshoe will have a more comfortable insole and a re-
duced weight because of the Strobel construction method. The Strobel method
is an optimal technique for producing flexible and light shoes. Regarding the
construction material, suede leather has been chosen for the upper portion while
vulcanized rubber will be used for the sole. Some prototypes have been created,
as seen in Figure 3, to test the new model’s structural and building qualities.

Fig. 3. Design sketch and picture of the model selected for the TOLIFE smartshoes

2.5 Smart mattress cover and environmental unit

Sleep disturbances and COPD are strictly related; sleep has effects on breath-
ing (e.g. changes in central respiratory control, airway resistance and muscular
contractility) that can cause severe issues in patients [16]. Obstructive sleep ap-
noea (OSA) is a common sleep disorder, and overlap syndrome, which occurs
when OSA and COPD coexist, is prevalent in COPD patients [17]. In TOLIFE,
a smart mattress cover with embedded pressure sensors and accelerometers cou-
pled with an environmental unit will be adapted and used to non-invasively
assess the COPD patients’ sleep quality and detect OSAs.

The smart mattress cover will be placed over the subjects’ mattress to track
their motion, position, and physiological signals (i.e. heart rate and breathing
rate). The environmental unit that will be used in the bedroom to measure
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air quality, humidity, temperature, environmental sound, and luminosity will be
the final component of the smart mattress cover. The raw data measured by
the mattress cover and environmental unit will be fused in accordance with the
methodology outlined in earlier works in order to extract a sleep quality index
[18]. Data from the smart mattress cover will be used to to gather additional
pertinent physiological parameters (heart rate [19][13], breathing rate [20] with
the potential to detect sleep apnoea events). In order to extract information
about the indoor air quality, temperature, and humidity, which can be thought
of as modulating factors of COPD [21–23], data from the environmental unit
will be used. Additionally, correlations between symptoms linked to abnormal
patient sounds and patient sounds detected by the environmental unit are possi-
ble (snoring, wheezing, and coughing). Figure 4 shows a sketch of the placement
of the smart mattress cover and environmental unit within the patient’s room
(left panel in figure 4) and the associated system architecture (right panel in
figure 4).

Fig. 4. Sketch and architecture of the smart mattress cover and environmental box

The smart mattress cover will include a textile-based pressure sensing array
(40 pressure sensors over an area of 50 by 40 cm) and a set of 3 accelerometers.
The raw signals from the pressure sensing array will be analysed to extract
position and movements of the subject over the mattress, respiratory activity and
abnormal breathing events such as coughing or apnoea. The accelerometers will
be used to extract information about the cardiac activity through the analysis
of the ballistocardiographic signal. Table 4 reports the raw sensor data that we
will collect from the smart mattress cover and the environmental unit.

The smart mattress cover architecture is composed by following three main
blocks (see Figure 4):

– Physiological Data Collector (PDC): the block has the objective of extracting
the raw sensor data from the smart mattress cover of the subject lying on
the mattress. The sensors involved are the pressure sensor array and the 3
accelerometers. Data reading will be managed through a dedicated front-end
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Table 4. Smart mattress cover and environmental box raw signals

Sensors Data output Sampling frequency

Accelerometer Acc x, Acc y, Acc z 128 Hz
Matrix Pressure Sensor 40 Pressure values 8 Hz

Air Quality Air Quality Index 1 Hz
Environmental Temperature Temperature 1 Hz

Environmental Humidity Relative Humidity 1 Hz
Environmental Sound Sound intensity 1 Hz
Environmental Light Light intensity 1 Hz

electronics coupled with an Arduino Due board. The acquired data will then
be sent via serial (USB cable) to the Principal Hub

– Environmental Data Collector (EDC): the block has the objective of col-
lecting environmental data. The parameters to be measured concern the
environmental conditions of the room and will be respectively temperature,
relative humidity, atmospheric pressure, air quality index, ambient bright-
ness, noise and/or ambient sounds. The management of environmental sen-
sors data will be based on a commercial platform, such as ESP32 board; the
sensors will interface with a front-end electronics, directly plugged on the
commercial platform. The acquired data will be sent via serial (USB cable)
to the Principal Hub.

– Principal Hub (PH): this block is a single board computer (i.e., a Rasp-
berry Pi) that will manage the data collected by the PDC and EDC, saving
them locally and sending them to the TOLIFE database when the internet
connection is available.

The patient’s mattress will have the smart mattress cover placed over it at
the thoracic area and the PDC electronics will be placed in a box (bedroom box
case) and placed in proximity of the bed or bedside table. The environmental
unit, which consists of the EDC electronics and environmental sensors, will be
positioned inside the room, perhaps on top of a dresser or table. The Raspberry
Pi and environmental unit will be housed in a special case (the bedroom box
case shown in Figure 4).

2.6 Mini-spirometer

Mini-spirometers will be used in the TOLIFE clinical studies to obtain a more
complete characterization of the patients’ respiratory capacity. After a market
search, we chose the mini-spirometer that allows us to measure clinically signif-
icant parameters like the FEV1 in addition to peak flow. Because it is a peak
flow device that can precisely measure peak expiratory flow (PEF) and FEV1,
the Smart One OXI device (MIR company) was chosen. It also has BLE con-
nectivity and an Android SDK, which enables the device to be integrated with
TOLIFE’s sensor platform. In fact, the device has a Bluetooth connection that
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enables data collected from the patient to be transferred directly to a smart-
phone. The Smart One OXI is specifically designed for personal use at home by
the patient. In addition, it is also able to measure oxygen saturation (SpO2) and
heart rate. Other characteristics are the low cost (around 100€) and availability
of SDK for custom application development. Table 5 reports the data that we
will collect from the mini-spirometer.

Table 5. Mini-spirometer raw signals

Sensors Data output Sampling frequency

Air flow PEF, FEV1 On demand
Optical sensor SpO2, HR On demand

3 Data integration and communication

The architecture of TOLIFE sensor platform is described in Figure 5. The sensor
platform foresees the smartphone as a central node. The smartphone will allow
the creation of an internet connection through which all the smart sensors will
be able to transmit the recorded data to the cloud. The smartphone will allow
direct interfacing with smartshoes and the mini-spirometer using the Bluetooth
connection.

Fig. 5. Architecture of smart sensors platform

The software applications for data collection from the smart sensors described
in previous sections were firstly developed as prototypes. We specifically e de-
veloped a smart watch application, a smartphone application and a Linux appli-
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cation to be deployed on the Raspberry Pi of the smart mattress cover. Android
apps on the smartwatch and smartphone are designed to gather data from em-
bedded sensors, save the data locally on each device, and then offload the data
to the TOLIFE cloud database.

The application for the smart mattress cover and environmental unit is de-
signed to collect data from the embedded sensors, save it locally and offload the
data as soon as a connection is available. An initial implementation of the data
offloading process is currently under development. We conducted preliminary
tests to verify the ability of the developed applications to extract raw data from
the sensors of smartwatches and smartphones. Signals related to the relevant
sensors present in the smartwatch are shown in Figure 6, while signals obtained
from smartphone sensors are shown in Figure 7.

Fig. 6. Smartwatch sensors output. In the left signals related to 3-axis Accelerometer
and Gyroscope are shown. In the right the signal related to the plethysmographic sensor
and microphone are shown.

4 Discussion and Conclusion

This paper outlines the sensing technologies, or ”smart sensors,” that have been
selected for the TOLIFE clinical study, outlining the raw data that we will gather
and their applicability to the ongoing evaluation of COPD patients’ health out-
comes. To enable uploading sensor data to the TOLIFE database, all chosen
devices—commercial sensors and the research prototypes will be integrated into
the TOLIFE platform. The completion of the software applications for data
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Fig. 7. Smartphone sensors output. In top figure 3-axis Accelerometer signals are re-
ported, while in the bottom the microphone raw data is shown

collection from the testing of smart sensors, integration of the smart mattress
cover and environmental unit, and experiments to gauge the effectiveness of the
smart sensors will be the following activities. The TOLIFE project approach
represents the smart sensors for non-invasive data collection in a daily-life con-
text and smart sensors will represent enabling technologies for personalized and
precision medicine.
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