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Abstract— In the last years, commercial smartwatches have
gained popularity as non-invasive and wearable devices to be
exploited for the monitoring of the cardiovascular system in
daily-life settings. However, their reliability is still unclear. In
this preliminary study, we evaluated the accuracy of heart rate
(HR) and HR variability (HRV) estimates obtained from the
Samsung Galaxy Watch 5 (SGW5) compared to a common
research-grade ECG sensor, i.e., the Shimmer3 ECG unit
(ShimECG), during both a resting and walking conditions.
For each condition, we compared HRV features of SGW5 and
ShimECG extracted in time, frequency, and non-linear domains
through correlation and Bland-Altman analysis. Additionally,
we compared SGW5 performance with those obtained from a
research-grade PPG sensor. Our results revealed an unbiased
and high-quality estimate of mean HR obtained from the
SGW5. Moreover, at rest, other relevant HRV features showed
a significant correlation between the SGW5 and ShimECG.
Conversely, during the walking condition, we found poor
performances for both PPG devices for most of the HRV
features. Such preliminary results confirm the reliability of
SGW5 to estimate mean HR. However, the reliability of SGW5-
derived PRV to extract sympathovagal correlates is still an open
question and deserves further investigation.

I. INTRODUCTION

Heart rate (HR) and heart rate variability (HRV) are
physiological parameters reflecting the general well-being of
a subject [1]. Variations of such parameters can be adopted to
evaluate stressful conditions, anxiety and panic [2]. Further-
more, they allow to identify autonomic imbalances associated
with cardiovascular and respiratory dysregulation [3], as well
as psychiatric disorders [4].

Electrocardiography (ECG) is the gold standard method
adopted to estimate HR and HRV parameters in clinical
and research settings. However, it is hardly used in daily-
life contexts where free movements are required. To address
this issue, wearable ECG sensors including shirts [5] and
chest belts [6], [7] have been proposed. However, they can
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be obtrusive and uncomfortable over day-long recording
periods. An alternative to ECG to estimate HR/HRV is the
use of photoplethysmography (PPG) sensors. The pulse rate
variability (PRV) estimated from the PPG signals can be used
as a reliable surrogate of the HRV [8], [9]. Specifically, PPG
estimates the volume variation of superficial blood vessels
at either the fingertip or the ear lobe through an LED and a
photo-receiver [10]. Although clinical-grade PPG monitoring
devices significantly limit movements due to the constraint
of wires, recently, wearable PPG sensors have rapidly spread
as a key equipment of most commercial smartwatches (SW).
Such large diffusion, combined with their ease of use and
connectivity features with other devices, as well as the sensor
positioning on the wrist, have led to the widespread use of
SWs also in scientific research applications [11]–[15].

In the last years, several SW applications have been tested
by comparing the SW performance against medical-grade
ECG and PPG, e.g., the Apple Watch [16], Empatica E4
[17], Fitbit Charge HR [18], and Microsoft band 2 [19]. Par-
ticularly, they showed accurate HR estimates during resting
conditions, with decreasing performances at the increase of
the subjects’ activity intensity. However, on the one hand,
such devices do not always provide direct access to raw
data, and HR information is extracted through black-box
proprietary algorithms. On the other hand, some of them
have a high cost that limits their spread. These limitations
are potentially overcome by the open-source Android Wear
operating system (OS), which has been recently adopted
by several commercial SWs. Particularly, Android Wear OS
allows developers and researchers to access sensors’ data
through the development of custom applications.

In this study, we evaluate the performances of an Android
Wear OS SW, i.e., the Samsung Galaxy Watch 5 (SGW5)
[20], on a group of healthy subjects during a resting state
and a walking condition. The SGW5 relative low-cost and its
long-life battery [20] could make it suitable for carrying out
24h HR and HRV monitoring research studies on a consistent
number of subjects. The evaluation is performed against the
measurements obtained from a validated ECG device, i.e.,
the Shimmer3 ECG unit [21]. Furthermore, we compare the
SGW5 performances with those obtained by a widely used
research-grade PPG device, i.e., the Shimmer3 GSR+ unit.
For each PPG signal, we derive HRV parameters in the
time, frequency, and non-linear domains, respectively, and
we evaluate Pearson correlation coefficients with the same



estimates obtained from ECG. Finally, we evaluate the device
accuracy through a Bland-Altman analysis.

II. MATERIALS AND METHODS

A. Subjects

The study was conducted according to the guidelines of the
Declaration of Helsinki. Twenty healthy volunteers (age 39
± 15, 7 females) signed an informed consent to take part in
the study. Subjects self-reported no history of cardiovascular
diseases.

B. Experimental settings

The experimental protocol consisted of two distinct con-
ditions: (1) 1min of resting state seated on a chair, with the
arms resting on the table, and (2) 1min of walking. Subjects
were asked not to talk during the experiment. Moreover,
during (1), subjects were asked to minimize movements. The
order of the conditions was randomized across subjects.

During each condition, we acquired the PPG signal at the
wrist of the subject’s non-dominant hand through the SGW5.
We developed an ad-hoc Wear OS application to retrieve raw
data from the PPG sensor, together with the relative universal
timestamp, at the maximum available sampling frequency of
25Hz. The data was sent via Bluetooth communication to a
smartphone and then stored in a computer for the processing
stage.

We acquired the ECG signal through the Shimmer3 ECG
unit (SHIMMER research, Dublin, Ireland) as the gold
standard for this study [21]. The sensor was mounted on
the subjects’ chest through an elastic band, with four leads
placed on the left arm, right arm, left leg, and right leg,
according to the manufacturer’s guidelines. We recorded
ECG as the difference between the right leg and left arm
leads, at the sampling frequency of 400Hz.

As an additional term of comparison, we acquired the PPG
signal by using also the Shimmer3 GSR+ unit (shimPPG).
The signal was acquired at the tip of the first finger of the
subjects’ non-dominant hand, at the sampling frequency of
25Hz.

To facilitate the following data processing, we synchro-
nized the recordings of the SWG5, ECG, and shimPPG.

C. Data processing

The raw data were preprocessed in Matlab (Version
R2021b, Mathworks, USA).

We filtered both the SGW5 and shimPPG data in the
(0.7-1.8)Hz frequency range through a zero-phase band-
pass IIR filter (transition band=0.1Hz). We identified pulse
peaks in the signals through the multi-scale peak and trough
detection (MSPDT) algorithm [22]. The outcome of the
MSPDT algorithm was visually inspected, and missing peaks
or peaks not properly identified were manually corrected
where possible. Afterwards, we imported peak-to-peak (P-
P) distance time series in Kubios HRV [1], and we derived
PRV signals after uniform interpolation at 4Hz. The PRV
was further corrected for the presence of artifacts (e.g.,
ectopic beats, abnormal P-P values) through the automatic

artifact correction algorithm using a conservative threshold
(low option in Kubios; see [1] for details). The procedure
was applied to both SWG5 and shimPPG data.

Regarding ECG, we applied a zero-phase band-pass IIR
filter (transition band=0.1Hz) in the (0.7-25)Hz range. We
estimated HRV time series using Kubios through the auto-
matic QRS complex detection algorithm [1], followed by
a uniform interpolation at the sampling frequency of 4Hz.
HRV artifacts were corrected through the Kubios automatic
artifact correction algorithm using the same threshold as for
the PRV signals.

Using Kubios, we extracted the following features from
PRV and HRV time series: (1) meanRR (i.e., the mean
distance between consecutive peaks); (2) stdRR (i.e., the
standard deviation of RR intervals); (3) RMSSD (i.e., root
mean squared differences of successive RR intervals); (4) LF
(i.e., low-frequency band; (0.04-0.15)Hz); (5) HF (i.e., high-
frequency band; (0.15-0.40)Hz); (6) LF/HF ratio; (7) SD1,
SD2 (i.e., the standard deviations of Poincaré plot).

D. Statistical Analysis

For each of the two experimental conditions (i.e., resting-
state, walking) and for each of the features extracted (see sec-
tion II-C), we computed the Pearson correlation coefficient
between the SGW5 and the ECG, and between the shimPPG
and ECG, to evaluate the overall degree of agreement among
measurements. The resulting p-values were corrected for
multiple comparisons between different devices (i.e., SGW5
vs ECG, shimPPG vs ECG) with the Bonferroni method.
Moreover, we conducted an individual Bland-Altman (BA)
analysis [23] on each SGW5 feature to evaluate its bias and
precision with respect to the ECG estimates. The same sta-
tistical procedure was applied to the shimPPG features. The
presence of a significant bias was assessed through a paired t-
test on the difference between devices’ measurements against
the null-hypothesis of no difference. P-values were corrected
for multiple comparisons.

E. Results

In Table I, we report the Pearson correlation coefficient ρ

between SGW5 and ECG, and between shimPPG and ECG,
for each of the estimated features (see section II-C), during
both the resting state and walking condition.

TABLE I: Pearson correlation coefficient between the PRV and
HRV features during the resting state and walking condition.
Significant correlations are highlighted in bold and marked by
* (*:p<0.05, **:p<0.01, ***p<0.001; p-values adjusted with the
Bonferroni correction).

SGW5 vs ECG shimPPG vs ECG
Feature Rest Walk Rest Walk

meanRR 0.99*** 0.63** 0.99*** 0.69***
stdRR 0.69*** 0.28 0.61** 0.41
RMSSD 0.49 0.37 0.34 0.34
LF 0.74*** 0.05 0.96*** 0.12
HF 0.64** 0.09 0.55* 0.45
LF/HF 0.47 0.14 0.61** 0.36
SD1 0.49 0.37 0.34 0.34
SD2 0.85*** 0.22 0.87*** 0.48
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Fig. 1: BA analysis results for the SGW5vsECG and shimPPGvsECG comparisons of a)meanRR (ms), b)stdRR (ms), c)LF (ms2), d)HF
(ms2), e)SD2 (ms) PRV/HRV features during resting-state. For each comparison and for each feature, we report the bias, computed as
the average difference between the devices’ measurements, and the limits of agreement, indicating the ±1.96 standard deviation interval
around the bias. Biases that significantly differed from 0 are indicated with * (*:p<0.05, **:p<0.01, ***:p<0.001; p-values adjusted with
the Bonferroni correction).

We observed similar correlations for the SWG5 and
shimPPG at rest. Specifically, meanRR estimates showed
an almost perfect degree of agreement with ECG ones
(ρSGW5vsECG = 0.99, ρshimPPGvsECG = 0.99). Moreover,
SGW5 and shimPPG performances were comparable for both
stdRR (ρSGW5vsECG = 0.69, ρshimPPGvsECG = 0.61) and SD2
(ρSGW5vsECG = 0.85, ρshimPPGvsECG = 0.87). In the spectral
domain, we observed significant correlations for both LF and
HF power estimates. Particularly, SGW5’s LF measurements
showed a high correlation with those obtained from ECG
(ρSGW5vsECG = 0.74), although shimPPG correlation was
even higher (ρshimPPGvsECG = 0.96). Conversely, SGW5’s
HF estimates showed a higher correlation with ECG, com-
pared to shimPPG (ρSGW5vsECG = 0.64, ρshimPPGvsECG =
0.55). However, while we found a significant correlation
between shimPPG and ECG for the LF/HF power ratio
(ρshimPPGvsECG = 0.61), such a relationship was not observed
for the SGW5. Finally, we did not find a significant corre-
lation for both RMSSD and SD1 estimates obtained from
SGW5 and shimPPG.

During the walking condition, the overall agreement be-
tween PRV and HRV features worsened with respect to the
resting state for both SGW5 and shimPPG. Devices showed
comparable significant correlation coefficients for meanRR,
with respect to ECG (ρSGW5vsECG = 0.63, ρshimPPGvsECG =
0.69). Nevertheless, none of the other features showed a
significant correlation.

In Fig.1-2, we report the results of the BA analysis
for both the SGW5 and shimPPG against ECG, during
the resting state and walking condition, respectively. Par-
ticularly, we report only those features for which we ob-
served a significant correlation between SGW5 and ECG.
The SGW5 estimated meanRR during resting state with
no bias, while shimPPG overestimated meanRR by 9ms
(Fig.1). Conversely, the SGW5 showed a higher negative
bias (i.e., an overestimation), compared to shimPPG, for

the estimation of stdRR (SGW5=-20ms, shimPPG=-8ms;
Fig.1b), HF (SGW5=-0.001ms2, shimPPG=0ms2; Fig.1d),
and SD2 (SGW5=-0.007, shimPPG=0; Fig.1e). Particularly,
both devices showed a tendency to overestimate more HF
power with the increase of its average magnitude (see
Fig.1d). On the contrary, devices showed a tendency to
underestimate more the LF/HF ratio with the increase of its
average magnitude, with the SGW5 having a greater bias,
compared to the shimPPG (SGW5=2.402, shimPPG=2.008).

Concerning the walking condition, both PPG sensors
estimated meanRR with no bias with respect to ECG.
Nevertheless, the limits of agreement highlighted a wide
range of variability among measurements (SGW5: [-78ms,
84ms]; shimPPG: [-80ms, 78ms]; see Fig.2). Additionally,
we observed a significant overestimation and broad limits of
agreement for all the other HRV features considered. Partic-
ularly, the overestimation trend increased at the increase of
the measurements’ magnitude.

Mean RR

Fig. 2: BA analysis results for the SGW5vsECG and
shimPPGvsECG comparisons of meanRR (ms) estimates during
walking. For each comparison we report the bias and the lim-
its of agreement (±1.96 standard deviations interval around the
bias). Biases that significantly differed from 0 are indicated with
* (*:p<0.05, **:p<0.01, ***:p<0.001; p-values adjusted with the
Bonferroni correction).



F. Discussion

In this study, we investigated the accuracy of the
commercially-available SGW5 to monitor HR dynamics in
a group of healthy volunteers during a resting state and a
walking condition. To this aim, we estimated the PRV and
its main features from the SGW5’s PPG built-in sensor, and
we compared them with the HRV features obtained from
the Shimmer3 ECG wearable unit [21]. Additionally, the
outcome of the comparison between the SGW5-PRV features
and the ShimmerECG-HRV ones was further compared with
that obtained by replacing the SGW5 with a research-grade
PPG sensor, i.e., the Shimmer3 GSR+ unit.

At resting state, our preliminary results show the SGW5
as a reliable wearable tool to provide unbiased estimates
of the average HR (from PRV time series). Moreover, the
correlation analysis of SGW5 HRV features against ECG
highlighted significant correlation coefficients with those
observed for shimPPG for relevant features such as stdRR,
LF, HF, and SD2. Nevertheless, Bland Altman’s analysis
showed a tendency for the SGW5 to estimate HRV features
with a higher bias compared to shimPPG. Given the im-
portant informative content of these features (especially the
frequency ones) linked to the autonomic nervous system,
such bias could limit the reliability of the inference on
sympathovagal balance. It is worthwhile noting that, while
ECG is characterized by sharp R peaks, PPG has a smoother
sinusoidal nature which makes peak detection intrinsically
more difficult and unprecise. On the other hand, the com-
parison with shimPPG could be affected by the acquisition
site. Indeed, previous studies reported more accurate HRV
parameters extracted from the finger, with respect to the
wrist [8]. In this light, we cannot exclude an effect of the
sensor position on the differences observed between SGW5
and shimPPG.

Concerning the walking condition, both the SGW5 and
shimPPG confirmed good reliability for the estimation of
the mean RR, although BA analysis indicated a significant
range of variability among measurements. The PRV-related
features performed poorly compared to the resting state.
These results were not totally unexpected, as they are in line
with previous validation studies on different PPG wearable
sensors [16]–[19]. Indeed, such devices are known to be
particularly susceptible to motion artifacts [10]. Accordingly,
deriving accurate PRV time series in such a context may be
tricky.

In noisy scenarios, several processing techniques in the
frequency domain have been proposed to accurately estimate
the mean HR from PPG recordings [24]–[27]. However, to
the best of our knowledge, such approaches do not provide
an alternative means to estimate HRV time series and extract
HRV features. Hence, our work aimed at evaluating the
reliability of the PRV time series derived from the SGW5.

In conclusion, our results, although preliminary, highlight
the reliability of the SGW5 as an open-source, non-invasive
and low-cost wearable device to monitor mean HR. On
the other hand, the reliability of PRV dynamics is still an

open question and deserves further investigation. Particularly,
for those parameters providing a window on sympathovagal
regulation such as HF power, which is a reliable parasym-
pathetic correlate to investigate stress, anxiety, and fatigue
conditions [2], future studies should evaluate whether such
HRV features extracted from the SGW5 can still be used to
distinguish different psychophysiological states.
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