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Abstract—Wrist photoplethysmography (PPG) devices are
gaining popularity as a non-invasive means to monitor pulse rate
variability (PRV) in daily-life settings. Yet, movement artifacts
make reliable estimation of PRV challenging during physical
activities even if not very intense. Various approaches based on
spectral analysis and deep learning (DL) have provided mean
HR over time with low estimation errors. However, mean HR
dynamics cannot be adopted to derive detailed information about
autonomic activity, for which PRV time series is necessary. In
this preliminary work, we propose a novel approach combin-
ing a convolutional denoising autoencoder (CNN-DAE) with a
physiologically-constrained custom loss function, which leverages
synchronous electrocardiographic (ECG) recordings and inter-
beat interval (IBI) information to reconstruct the PPG signal,
free from artifacts, and obtain reliable PRV. The reconstructed
PRV has been averaged across time windows to estimate the
mean HR and compare it against those obtained from standard
bandpass filtering procedures of PPG and ECG’s HRV, which
was used as the gold standard reference. Our preliminary results
suggest that our method can accurately estimate PRV, providing
mean HR unbiased estimates with significantly lower error rates
than conventional approaches. This suggests that the proposed
methodology could be adopted to denoise PPG time series in
uncontrolled environments.
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I. INTRODUCTION

Monitoring heart rate variability (HRV) allows for the as-
sessment of autonomic imbalances associated with both physi-
ological and pathological conditions, providing information to
users about their lifestyle and assisting clinicians in personaliz-
ing treatments. Although wearable electrocardiographic (ECG)
holters are considered the gold standard for estimating HRV in
unconstrained settings, they may feel uncomfortable to wear
over long periods. In this context, several studies indicated
wrist photoplethysmography (PPG) sensors as an easy-to-use
and non-invasive means to estimate mean heart rate (HR) and,
to some extent, the pulse rate variability (PRV), i.e., a surrogate
of HRV, during daily-life activities [1].

Wrist devices can provide accurate HR estimates during
resting activities [2], [3]. However, motion artifacts (MA)
can severely deteriorate the signal quality during physical
activities even if not very intense, affecting the reliability of
HR estimates [2], [3]. In this context, several signal processing
techniques have been proposed to denoise and reconstruct PPG
time series, including adaptive and Kalman filtering [4], [5],
wavelet analysis [6], time-frequency analysis [7], and signal
decomposition [8], [9]. However, these approaches involve the
tuning of thresholds and parameters which may vary according
with the context of the recordings, potentially making their
application to free-living conditions not practical.

Recently, solutions based on deep learning (DL) have been
proposed for denoising PPG time series recorded in daily-
life settings and extracting useful parameters from them [10]–
[14]. Among them, solutions based on convolutional neural



network (CNNs) have showed good denoising performances,
recovering an estimate of the mean HR over time with high
accuracy [12]–[14]. Yet, recovering PRV time series is a
more complex task, as it requires the accurate denoising and
reconstruction of individual PPG pulses to derive the distance
between consecutive peaks reliably. Furthermore, mean HR
dynamics cannot be used as a surrogate of PRV when more
specific parameters about autonomic balance need to be es-
timated. In this light, a methodology capable of providing a
reliable estimate of PRV could be of great interest.

In this work, we propose a preliminary approach based
on a convolutional denoising autoencoder (CNN-DAE) for
denoising PPG time series in the context of high-intensity
activity recordings and improve the reliability of HR estimates
from PRV [9]. In particular, we implement a novel training
strategy introducing a physiologically constrained penalty to
the model’s loss function.

DAEs learn to reconstruct PPG signal by minimizing the
distance between the reconstruction of input noisy time series
and their clean reference counterpart. However, recording two
identical PPGs, where one of them is not susceptible to
any artifact, is a complex task. To derive a clean reference
signal to train the network with, we applied a PPG simulation
model which uses RR intervals of the synchronously acquired
ECG as an input [15], [16]. We built the training loss as
the mean squared error (MSE) between the model output
and the reference time series, and we combined it with a
custom penalty term based on the difference between the
inter-beat interval (IBI) time series obtained from the model
output and reference PPGs, respectively. A custom penalty
factor is introduced in the calculation to also account for
spurious and missing peaks observed in the model output.
This allows the network to learn realistic artifact dynamics
while reconstructing PPG time series with higher physiological
plausibility.

We derived the mean HR as the average of the PRV time
series within non-overlapping windows of 30 seconds. Finally,
the results of this processing chain were compared with the
mean HR estimated from the original PPG series applying a
standard spectral analysis. The estimates obtained from both
approaches were then compared with those obtained from
ECG-derived PPG time series, considered as the gold standard
reference in this work.

II. DENOISING ALGORITHM

A schematic overview of the denoising algorithm is depicted
in Fig.1. A CNN-DAE is designed to denoise and reconstruct
PPG time series. The model is trained based on a custom
loss function which combines the error between the predicted
output and clean reference PPG time series, as well as the
error between their respective predicted and reference RR time
series. Reference data is derived through a PPG simulation
model which takes the RR information obtained from syn-
chronous ECG recordings as input.

A. CNN-DAE model

The model is based on the structure of a DAE, consisting of
an encoder, a bottleneck, and a decoder. The encoder is made
of five blocks. Each block consists of a convolutive layer,
an exponential linear unit (ELU) activation function, batch
normalization, and an average pooling layer of size 2. We
adopted 32 output kernels for the first convolutive layer, and
64 output kernels for the others. We set the alpha parameter
of ELU layers at its default value of 1.
The bottleneck is made of four blocks including a convolutive
layer, ELU function, and batch normalization each. The num-
ber of output kernels at each CNN block is 128, 256, 128, and
64 respectively.
The decoder is designed to mirror the encoder, with the last
block including only a convolutive layer with one output kernel
and a linear activation function. We set a kernel size of 32 for
all the CNN blocks of the network.

B. Reference PPG data generation

We adopted a phenomenological model of PPG [15], [16]
to generate reference counterparts of the noisy input time
series. This model leverages RR information of synchronous
low-noise ECG to derive an accurate surrogate of the ideally
artifact-free PPG. More specifically, single PPG pulses are
obtained as the linear combination of three functions: a log-
normal and two Gaussians. Notably, the parameters of these
functions can be adjusted to model five different types of
PPG pulses. Hence, it is possible to account for morphological
differences of the pulse shape due to the particular PPG sensor
adopted. The width of both the systolic and diastolic parts of
each pulse depends on the adjacent RR intervals through two
inversely proportional time scale factors. Similarly, the peak
amplitude is scaled to account for the variation of ventricular
filling time, which could not be negligible for episodes such
as ectopic beats [15].
The complete modeled PPG signal y(t) is obtained by placing
the pulses at the occurrence of each ECG R peak, and adding
a noise term ϵ(t):

y(t) =

N∑
i=1

pi(t− δi) + v(t) (1)

where pi(t−δi) is the i-th PPG peak, δi is the time instant at
which the corresponding R peak occurs, and N is the number
of detected R peaks. The noise term v(t) is obtained by
convolving white Gaussian noise with a filter whose spectral
response resemble the properties of motion artifacts (see [15]
for more details), and makes the generated PPG signal more
realistic. Since our aim was to obtain an artifact-free reference
to train the network with, we did not include the additive error
term to the model equation.

C. Loss function

We designed a physiologically-constrained loss function
which exploits the the reference PPG and its IBI time series:



Fig. 1. Schematic representation of the proposed denoising algorithm. Noisy PPG time series x(t) are provided as input to a convolutional-denoising
autoencoder (CNN-DAE) to remove motion artifacts and reconstruct pulse peaks ŷ(t). The network is also provided with a synthetic clean reference PPG
y(t) of the input. This is obtained through a simulation model which leverages the distance between consecutive ECG R peaks (rr). The model is trained
based on a custom loss function f(y, ŷ, rr, r̂r) which takes into account both the mean squared error (MSE) between predicted and reference PPGs (i.e.,
ŷ(t) and y(t)), and the MSE between their inter-beat intervals (i.e., r̂r and rr). A block diagram representing the CNN-DAE structure is depicted in the gray
box at the top-right of the figure.

f(y, ŷ, rr, r̂r) = MSE(y, ŷ) + λ ·MSE(rr, r̂r) (2)

the first term evaluates the MSE between the reference
PPG y and the predicted output ŷ. The second term instead
evaluates the MSE between the reference IBI (rr) and the
IBI estimated from the model output PPG (r̂r), and combines
with the first term through the scalar parameter λ. While the
first term allows for the network to learn how to reproduce
the patterns of clean PPG signal, the second term confers
knowledge to the network about plausible distances between
consecutive peaks, acting as a fine tuning over the first term.
Moreover, it provides a regularization mechanism through
which spurious peaks or physiological peaks not properly
reconstructed are penalized.

To achieve this, at each training step of the model, we
identified pulse peaks from both y and ŷ through an implemen-
tation of the validated multiscale peaks and troughs detection
(MSPTD) algorithm [17]. We then derived the predicted and
reference IBIs (i.e., r̂r and rr) as the temporal distance
between adjacent PPG pulse peaks. Since the CNN-DAE
model may fail to provide an accurate reconstruction of each
PPG pulse, additional spurious pulses and missing true peaks
may occur. Accordingly, the length of r̂r may differ from that
of rr. To account for these scenarios, we adjusted the length
of the two IBI time series as follows:

r̂r =


[r̂r1, . . . , r̂rN ,0] if N ′ > N

[r̂r1, . . . , r̂rN ′ ,a] if N ′ < N

[r̂r1, . . . , r̂r
′
N ] if N ′ = N

(3)

rr =

{
[rr1, . . . , rrN ,a] if N ′ > N

[rr1, . . . , rr
′
N ] if N ′ ≤ N

(4)

where 0 ∈ ℜ1×|N ′−N | is a vector of zeros, a ∈ ℜ1×|N ′−N |

is a vector of scalar penalty terms of value a, and N ′ and N
are the length of r̂r and rr. If the number of peaks found in

ŷ matches the number of true peaks in y, we simply compute
the MSE between r̂r and rr. On the other hand, if ŷ contains
more (i.e., spurious) peaks, we replace the exceeding N ′ −N
terms in r̂r with zeros, and we extend rr to the length of
r̂r by appending a vector of penalty terms a to it. Similarly,
if the number of peaks found in ŷ is less than the expected
number (i.e., the model has ”missed” some peak), we extend
the length of r̂r appending |N ′ − N | penalty terms to it.
Accordingly, the error between the two IBI time series will be
maximum (i.e., a) for those peaks that have been mistakenly
reconstructed (spurious or missing peaks), whereas the true
error will be computed for the distances between all the other
detected peaks.

III. MATERIALS AND METHODS

In this section, we evaluate the performances of our denois-
ing model on a publicly available dataset [18], [19]. First, we
describe the dataset. We then illustrate the procedure followed
to train the model, as well as the analyses conducted to
evaluate its performances against a standard procedure based
on bandpass filtering and power spectrum analysis for the
estimation of mean HR.

A. Dataset

We adopted the publicly available dataset proposed for
the IEEE Signal Processing Cup (IEEE SPC) 2015 [18],
[19]. Twelve healthy participants (age: 18-36) were asked to
perform the following motion activities: (1) 30s of resting-
state, (2) running at the speed of 6km/h for 1min, (3) running
at the speed of 12km/h for 1min, (4) decrease the speed
to 6km/h for 1min, (5) increase again the running speed to
12km/h, and (6) 30s of final resting-state. Recordings included
signals from a three-axis accelerometer, two equivalent PPG
channels, and one ECG channel. Signals were simultaneously
collected at the sampling rate of 125 Hz, and recordings lasted
for about 5min. In this work, we used the first PPG channel
and the ECG channel.



For each subject, we segmented PPG data into 8s-long
windows (1000 samples) [14]. We adopted an overlap of
7s between consecutive windows to augment the data size.
Finally, we normalized the amplitude within each window
between 0 and 1. The same procedure was applied to the
reference clean PPG data, which was obtained according with
the procedure illustrated in Section II-B.

B. Model training

We trained the CNN-DAE model described in Section II-A
using a batch size of 32. Accordingly, input data had a shape
of {32, 1, 1000}, where the first dimension is the batch size,
the second is the number of features per sample (i.e., the PPG
amplitude), and the third is the window length in samples.
We set the parameters of the loss function to λ = 10−3 and
a = 0.250. We adopted the Adam optimizer with an initial
learning rate of 5× 10−4, and we gradually decreased it by a
factor of 0.5 down to 1×10−6 whenever the validation loss did
not improve for five consecutive epochs. A procedure based
on model check-points and early stopping was implemented
to prevent overfitting. Specifically, the model parameters were
saved whenever an improvement on the validation set was
observed, and the training was stopped when no improve-
ments occurred for 10 consecutive epochs. We implemented
the CNN-DAE model and the loss function computation in
PyTorch, and the training was carried out using a server from
the University of Pisa with four GPU NVIDIA A100 Tensor
Core.
We trained the denoising model through a leave-one-subject-
out (LOSO) 10-fold cross-validation (CV). Accordingly, for
each subject, the model was trained on the data from the other
11 participants, and tested on the excluded subject. For each
subject, we estimated the IBI from the model output. Then,
we derived the PRV time series through cubic interpolation at
the sampling frequency of 4Hz, and we estimated the mean
HR within windows of 30s with no overlap. These steps were
performed using the software Kubios HRV [20].

C. Model performance evaluation

To evaluate the performances of our approach, we repeated
the estimation of mean HR from the choosen dataset using a
standard procedure. Specifically, for each subject, we bandpass
filtered PPG data in the (0.5-5)Hz, and we estimated the power
spectral density within non-overlapping windows of length 30s
using an autoregressive (AR) model of order 100 [14]. We
estimated mean HR as 60 · fHR, where fHR is frequency
associated with the maximum of the power spectrum in the
(0.75-3) Hz range, corresponding to a beats-per-minute (bpm)
range of (45-180) bpm.

For both the denoising model and the spectral approach,
we computed the mean absolute error (MAE) between the
estimated mean HR and the gold standard reference values
derived from the HRV of ECG. We compared the MAE
distributions through a Wilcoxon sign-rank test (α=0.05) to
assess whether the model showed a significant improvement
in the estimation error with respect to the standard approach.

Moreover, we conducted a Bland-Altman analysis to inves-
tigate for estimation biases and correlations with the gold
standard measurements.

IV. RESULTS

A. Model training results

In Fig.2 we report the training and validation loss curves
for an exemplary subject. Across subjects, the model required
an average of 80 epochs to train. Training was stopped when
the performances on the validation set did not improve for 10
consecutive epochs, and the model weights were restored to
those associated with the last epoch with an improvement.

Fig. 2. Model’s training loss (blue) and validation loss (red) trends across
epochs for an exemplary subject during LOSO procedure.

In Fig.3c we also report an example of the predicted output
provided by the proposed denoising algorithm, together with
the corresponding noisy input (Fig.3a) and reference clean
(Fig.3b) PPGs, for an interval of 8s. It can be observed that the
model successfully removed motion artifacts and reconstructed
original pulse peaks.
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Fig. 3. PPG signals for an exemplary subject: a) original time series; b)
clean reference; c) denoised and reconstructed model output. Time series are
depicted over a window of 8s. The amplitude is normalized in the (0-1) interval
and then mean-centered around 0.

B. Model performance evaluation results

Our model showed a significant improvement of the mean
HR estimation error with respect to the standard spectral
method. Specifically, as depicted in Fig.4, the standard method
estimated mean HR with a median MAE of 12.31bpm (in-
terquartile range (IQR): 5.83-18.86 bpm). Conversely, the
median MAE committed by our model was 2.49bpm (IQR:
0.89-4.44 bpm).
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Fig. 4. Comparison of the mean absolute error (MAE) between the standard
spectral approach (blue) and the denoising model (red). The solid horizontal
line inside each box indicates the median, whereas the top and bottom
of the boxes indicate the interquartile range (IQR). The denoising model
demonstrated a significant reduction in estimation error compared to the
standard approach (*: p<0.05).

Table I shows the MAE of the denoising model and the
standard method for each subject in the dataset. There is
a consistent improvement of the estimation error across the
entire dataset, with an overall average MAE of 3.68bpm for the
model, compared to the average MAE of 13.49bpm committed
using the standard approach.

In Fig.5-6 we report the BA results on the mean HR
estimates obtained from the spectral approach (Fig.5a-6a) and
our denoising model (Fig.5b-6b), with respect to the gold
standard estimates obtained from ECG. Both approaches were
able to estimate mean HR with no significant bias with respect
to ECG. Nevertheless, the denoising model showed lower
limits of agreement (LOA) compared to the spectral method,
indicating that it is capable of providing more consistent and
closer estimates to those of the gold standard. Regarding the
correlation between estimates, the spectral method did not
exhibit a significant relationship with ECG (Fig.6a). On the
other hand, the estimates obtained through the denoising model
showed a significant correlation with those provided by ECG,
with a Pearson correlation coefficient ρ of 0.92 and an r2 index
of 0.84 (Fig.6b).
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Fig. 5. Bland-Altman (BA) bias analysis of the mean HR provided by the
spectral method (a) and CNN-DAE model (b), against the estimates obtained
from ECG analysis. For each of the approaches, we report the bias, computed
as the average difference between the method and gold standard estimates,
and the limits of agreement (LOA), indicating the ±1.96 standard deviation
interval around the bias. Both approaches showed no significant estimation
bias. However, the LOA were lower for the denoising model estimates,
compared to those obtained from the spectral method.
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Fig. 6. Bland-Altman (BA) correlation analysis of the mean HR provided
by the spectral method (a) and CNN-DAE model (b), against the estimates
obtained from ECG analysis. For each of the estimation methods, we report
the Pearson correlation coefficient r, the coefficient of determination r2, and
the pvalue associated with the significance of the linear regression relationship
between measurements. There is no significant linear correlation between
spectral method’s estimates and those obtained from ECG. Conversely, the
CNN-DAE model estimates showed a significant correlation with ECG ones,
reporting a correlation coefficient of 0.92.

V. DISCUSSION

We proposed a preliminary approach to denoise PPG data
acquired during high-intensity activities from a wearable wrist
device, aiming to improve the reliability of mean HR estimates
from PRV. To this aim, we designed an ad-hoc CNN-DAE
model that was trained using a physiologically-constrained
custom loss function, and we evaluated the estimation error
using ECG’s HRV as the gold standard. We compared the
performances of our approach against those obtained using
a procedure which combines standard bandpass filtering and
spectral analysis. Our preliminary results indicate that the
proposed methodology could effectively denoise PPG time
series and provide significant PRV estimates in everyday
settings.

The performances’ analysis showed that the proposed de-
noising algorithm was able to estimate mean HR with an
average MAE of 3.68bpm, outperforming some previously
proposed DL approaches tested on the same dataset [13].
We observed an improvement of the estimation error for all
the subjects in the dataset, with errors as low as 0.30 bpm.
Still, one subject showed a high residual error, suggesting that
our methodology could be further improved against outliers.
Furthermore, BA analysis showed a high agreement of mean
HR estimates between the proposed model and ECG, without
significant bias. However, we observed a tendency for both
the standard approach and the model to overestimate mean
HR with respect to ECG. This could be due to either a higher
number of peaks detected by the peak detection algorithm or
the intrinsic differences between ECG and PPG [1].

More sophisticated spectral approaches compared to the
baseline method adopted in this study showed an even higher
accuracy with respect to our denoising model [9], [14]. It is
worth noting, however, that these methodologies are focused
on providing a direct estimation of the mean HR, which can
not be adopted to estimate PRV time series. Our approach
focuses instead on the accurate denoising and reconstruction



TABLE I
COMPARISON OF THE MEAN HR ESTIMATION ERROR BETWEEN THE PROPOSED CNN-DAE MODEL AND THE STANDARD SPECTRAL ANALYSIS. FOR

EACH SUBJECT OF THE DATASET, IS REPORTED THE MEAN ABSOLUTE ERROR (MAE) OF THE MEAN HR ESTIMATES AGAINST THOSE OBTAINED FROM
ECG’S HRV. THE LAST COLUMN OF THE TABLE REPORTS THE OVERALL MAE ACROSS SUBJECTS.

MAE(bpm) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg
CNN-DAE 5.46 4.51 1.37 3.34 0.60 3.19 0.30 1.18 1.79 17.51 0.56 4.37 3.68

Spectral 16.62 25.70 15.05 8.26 3.27 9.58 2.84 19.45 5.02 31.12 6.64 18.28 13.49

of PPG pulses, so that the distance between consecutive pulses
and, hence, PRV can be derived.

In the methodology proposed by [14], they combine the
outcome of several denoising CNNs to reconstruct PPG time
series. While their DL approach shows on average a lower
estimation error compared to ours, the performances drop
when ensemble learning is not used. On the one hand, this
suggests that our CNN-DAE architecture is capable of pro-
viding a better reconstruction of the PPG signal. On the other
hand, their results highlight that combining the outcome from
several models may yield to better denoising performances.
Indeed, neural networks are prone to fall into different local
minima due to weights initialization. In this context, com-
bining the output of multiple models has been proved to
reduce estimation variance and improve generalization [21].
Accordingly, future studies will aim to integrate ensemble
learning techniques into the proposed denoising algorithm.

One of the greatest advantages of PRV time series analysis
regards the investigation of autonomic balance through its
power spectrum components. Nevertheless, reaching a high
estimation accuracy of such spectral parameters is a more
challenging task compared to mean HR estimation, as it
requires highly-reliable PRV time series. In this light, future
works will focus on improving our denoising algorithm to raise
the accuracy of relevant PRV frequency-domain parameters
and on the comparison with other previously validate deep-
learning approaches.
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